Structural Investigation of Dihydrooxazinones

MICHAEL BOLTE

Institut für Organische Chemie der Universität Frankfurt, Marie-Curie-Strasse 11, D-60439 Frankfurt am Main, Germany

(Received 12 May 1995; accepted 3 July 1995)

Abstract

The crystal structures of six dihydrooxazinones, (6S,3R,1'R)-3,6-dihydro-6-isopropyl-5-methoxy-3-methyl-3-(3'-oxo-1'-phenylbutyl)-2H-1,4-oxazin-2-one, C₁₉- $H_{25}NO_4$, (6S, 3R, 1'R)-3, 6-dihydro-6-isopropyl-5-methoxy-3-methyl-3-(3'-oxo-1',3'-diphenylpropyl)-2H-1,4oxazin-2-one, $C_{24}H_{27}NO_4$, (6S, 3R, 1'R)-3-(1'-cyclohexyl-3'-oxobutyl)-3,6-dihydro-6-isopropyl-5-methoxy-3-methyl-2*H*-1,4-oxazin-2-one, $C_{19}H_{31}NO_4$, (6S,3S,1'R)-3-[(diethylammonio)(phenyl)methyl]-3,6-dihydro-6isopropyl-5-methoxy-3-methyl-2H-1,4-oxazin-2-one chloride, $C_{20}H_{31}N_2O_3^+.Cl^-$, (6S, 3R, 1'S)-3, 6-dihydro-3-[(hydroxy)(phenyl)methyl]-6-isopropyl-5-methoxy-3methyl-2H-1,4-oxazin-2-one, C₁₆H₂₁NO₄, (6S,3S,1'S)-3,6-dihydro-3-[(hydroxy)(phenyl)methyl]-6-isopropyl-5-methoxy-3-methyl-2H-1,4-oxazin-2-one, $C_{16}H_{21}NO_4$, were determined, and represent the first crystal structures reported containing this type of heterocycle. The geometrical parameters of the heterocycle and the preferred conformations of the substituents are discussed. The characteristic features of the dihydrooxazinones are compared with those of bis-lactim ethers and lactides. An explanation is given for the appearance of the folded conformation by which an aromatic ring shields the heterocycle.

Comment

Dihydrooxazinones play an important role in the course of the asymmetric synthesis of amino acids (Schöllkopf, 1983; Maywald, 1987). The conformation of the heterocycle and the position of side chains, with respect to the heterocycle, are decisive for reactivity and selectivity during the synthesis. In order to obtain a deeper insight into the reaction processes, the crystal structures of six dihydrooxazinones, a type of heterocycle for which no entry exists in the Cambridge Structural Database (version 5.08, October 1994; Allen & Kennard, 1993), were determined. Their structural parameters were compared with those of two similar heterocycles: lactides and bislactim ethers; the dihydrooxazinone can be regarded as a hybrid between these two. All compounds were available as pure enantiomers for which the absolute configuration at C(6) was known from the chemical synthesis.

The dihydrooxazinone heterocycle of (6S,3R,1'R)-3,6dihydro-6-isopropyl-5-methoxy-3-methyl-3-(3'-oxo-1'phenylbutyl)-2H-1,4-oxazin-2-one, (1) (Fig. 1), adopts a nearly planar conformation [Q = 0.099 Å, $\varphi = 126.9$, $\theta = 86.5^{\circ}$ (Cremer & Pople, 1975)]. The molecule exhibits the so-called folded conformation by which an aromatic residue shields the heterocycle. This interesting phenomenon was not only found for diketopiperazines in solution (Kopple & Marr, 1967; Kopple & Onishi, 1969) and in the solid state (*e.g.* Lin & Webb, 1973), but also for hydantoines (Fujiwara, Bose, Manhas & van der Veen, 1979) and 1,4-dihydropyridines (Iwasaki, Watanabe & Maeda, 1987). The angle between the phenyl ring and the heterocycle is 47.0 (1)°.

Fig. 1. Perspective view of (1) with the atom numbering and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.

The exchange of the terminal methyl group by a phenyl ring leads to (6S,3R,1'R)-3,6-dihydro-6-isopropyl-5-methoxy-3-methyl-3-(3'-oxo-1',3'-diphenylpropyl)-2*H*-1,4-oxazin-2-one, (2) (Fig. 2), but this does not markedly alter the conformation of the rest of the molecule. The heterocycle is again nearly planar [Q = -0.138 Å, $\varphi =$ 135.2, $\theta = 85.0^{\circ}$ (Cremer & Pople, 1975)] and the angle between it and the shielding phenyl ring is 46.0 (1)°.

Fig. 2. Perspective view of (2) with the atom numbering and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.

In order to discover whether non-aromatic substituents show a similar tendency to shield the heterocycle, the phenyl ring of (1) was replaced by clohexyl-3'-oxobutyl)-3,6-dihydro-6-isopropyl-5-methoxy-3-methyl-2H-1,4-oxazin-2-one, (3). The result is shown in Fig. 3. Compound (3) crystallizes with two molecules in the asymmetric unit, which differ significantly only in the angular position of the cyclohexyl group [C(3)-C(1')-C(2')-C(3') 79.8(3)] and 93.0 (3)°]. Slight steric interactions between the cyclohexane and the planar dihydrooxazinone rings [Q =-0.041 and -0.068 Å, $\varphi = 297.5$ and 147.1° , $\theta = 71.6$ and 74.5° , respectively for each molecule (Cremer & Pople, 1975)] lead to a modest increase of the angle C(3)—C(1')—C(2') [114.2 (2) and 112.2 (2)°] compared to the angles of 111.0(2) in (1) and $111.1(2)^{\circ}$ in (2).

Fig. 3. Perspective view of molecule A of (3) with the atom numbering and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.

In contrast to these three structures, in (6S, 3S, 1'R)-3-[(diethylammonio)(phenyl)methyl]-3,6-dihydro-6-isopropyl-5-methoxy-3-methyl-2H-1,4-oxazin-2-one chloride, (4) (Fig. 4), the bulkiest substituents lie on the same side of the heterocycle which, therefore, adopts a flattened-boat conformation with O(1), C(2), N(4) and C(5) in the plane [Q = 0.304 Å, $\varphi = 127.5$, $\theta = 89.8^{\circ}$ (Cremer & Pople, 1975)] while both C(3) and C(6) deviate above the plane by 0.26 Å. The Cl⁻ ion is bound *via* a hydrogen bond to the diethylammonium group [H(N)···Cl 2.21 (5), N(1'')···Cl 3.066 (4) Å, N(1'')— H(N)···Cl 158 (4)°].

Fig. 4. Perspective view of (4) with the atom numbering and displacement ellipsoids at the 50% probability level. H atoms, except H(N), have been omitted for clarity.

The most interesting structures in this series are the diastereoisomers (6S, 3R, 1'S) - 3, 6 - dihydro - 3 -[(hydroxy)(phenyl)methyl]-6-isopropyl-5-methoxy-3methyl-2H-1,4-oxazin-2-one, (5) (Fig. 5), and (6S,3S,1'S)-3,6-dihydro-3-[(hydroxy)(phenyl)methyl]-6-isopropyl-5methoxy-3-methyl-2H-1,4-oxazin-2-one, (6) (Fig. 6). Both heterocycles appear in a flattened-boat conformation with O(1), C(2), N(4) and C(5) forming the base [for (5), Q = -0.188 Å, $\varphi = 141.7$, $\theta = 82.3^{\circ}$; for (6), $Q = 0.183 \text{ Å}, \varphi = 122.1, \theta = 87.2^{\circ}$ (Cremer & Pople, 1975)]. The difference in the chirality of C(3) leads to very different conformations. While (6) adopts a folded conformation, the phenyl ring in (5) is extended towards the N atom of the heterocycle. As a result of this the hydroxy groups form different hydrogen bonds. While in (5) there is an intermolecular hydrogen bond $[H(1'O) \cdots O(21^{i}) 2.26(2), O(1') \cdots O(21^{i}) 3.07(1) Å,$ $O(1') - H(1'O) - O(21^{i})$ 159 (4)°; symmetry code: (i) 2 - x, y - 0.5, 1 - z], in (6) there is an intramolecular attraction between the hydroxy H atom and $N(4) [H(1'O) \cdots N(4) 2.32(4), O(1') \cdots N(4) 2.790(4) Å,$ O(1')— $H(1'O) \cdots N(4)$ 115 (4)°]. The *cis* arrangement of the phenyl ring and the isopropyl group in (6) results in an increased C(3)—C(1')—C(2') bond angle of 113.7 (2)° [compared to 111.0 (2) in (1) and 111.1 (2)° in (2)] and a larger angle between the aromatic ring and the heterocycle of $72.0(1)^\circ$. The distance between the two ring centres is 4.034 Å, compared with 3.632 in (1) and 3.618 Å in (2).

Fig. 5. Perspective view of (5) with the atom numbering and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.

Fig. 6. Perspective view of (6) with the atom numbering and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.

Average values for bond lengths and angles of the dihydrooxazinone ring show very small standard deviations (Table 7). In each compound the methoxy group lies in the plane of the heterocycle. The rigidity of the C==N double bond prevents this type of heterocycle from adopting a well pronounced boat conformation, as in lactides (Bolte, Beck, Nieger & Egert, 1994). As a result of forcing the carboxylic ester group into a common plane with the lactim ether moiety, the intra-annular angles C(6)—O(1)—C(2) and O(1)—C2—C(3) are widened, while the extra-annular angles O(1)—C(2)—O(21) and C(3)—C(2)—O(21) are decreased compared to those of pure lactides.

The geometric parameters of the lactim-ether moiety are in excellent agreement with those of the five published bis-lactim ethers (Schöllkopf, Grüttner, Anderskewitz, Egert & Dyrbusch, 1987; Schöllkopf, Hupfeld, Küper, Egert & Dyrbusch, 1988; Schöllkopf, Kühnle, Egert & Dyrbusch, 1987; Schöllkopf, Pettig, Busse, Egert & Dyrbusch, 1986; Schöllkopf, Pettig, Schulze, Klinge, Egert, Benecke & Noltemeyer, 1988).

The isopropyl group adopts nearly the same conformation in each of the six structures. The torsion angle C(5)—C(6)—C(61)—H(61) has a mean value of 60 (2)° and the average H(61)···O(51) distance is 2.51 (4) Å. The isopropyl group prefers an arrangement where the small H atom is in the direct vicinity of the methoxy O atom, a conformational preference also found in the bis-lactim ethers. A similar arrangement was found for lactides (Mathieson & Taylor, 1963; Bolte *et al.*, 1994) where a tertiary C atom takes a position in which its attached H atom is in close proximity to the carbonyl O atom of the heterocycle. This conformation was not only found for the isopropyl group but also for the H atom, H(1'), in all of the six dihydrooxazinones. The mean of the absolute value of the torsion angle C(2)—C(3)— C(1')—H(1') is 56 (10)° and the mean H(1')···O(21) distance is 2.6 (1) Å.

This preferred arrangement helps us to understand the conformation of the molecules without regarding attractive interactions between the heterocycle and the aromatic residue. Whenever a tertiary C atom is attached to the heterocycle the H atom is found in the vicinity of the carbonyl O atom. In spite of some small distortions [widening of the angle C(3)—C(1')—C(2')] even (6) adopts this conformation.

Experimental

Compounds (1), (3) and (6) were crystallized from cyclohexane, (2) from cyclohexane/2-propanol, (4) from acetone/cyclohexane and (5) from cyclohexane/ether.

Compound (1)

Crystal data C19H25NO4 Mo $K\alpha$ radiation $\lambda = 0.71069 \text{ Å}$ $M_r = 331.4$ Cell parameters from 40 Orthorhombic P212121 reflections $\theta = 10 - 12.5^{\circ}$ a = 8.863(1) Å $\mu = 0.08 \text{ mm}^{-1}$ b = 13.429(1) Å c = 15.791(1) Å T = 293 KV = 1879.5 (5) Å² Block Z = 4 $0.8 \times 0.5 \times 0.4$ mm $D_x = 1.171 \text{ Mg m}^{-3}$ Colourless

Data collection

Stoe Siemens four-circle	$\theta_{\rm max} = 25^{\circ}$
diffractometer	$h = -10 \rightarrow 10$
$\omega/2\theta$ profile fitting (Clegg,	$k = 0 \rightarrow 15$
1981)	$l = -16 \rightarrow 18$
Absorption correction:	3 standard reflections
none	monitored every 100
1900 measured reflections	reflections
1900 independent reflections	intensity decay: negligible
1717 observed reflections	
$[F > 3\sigma(F)]$	

Refinement

Refinement on FR = 0.041 $\Delta \rho_{\text{max}} = 0.13 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.12 \text{ e } \text{\AA}^{-3}$

wR = 0.045	Extinction correction: see	wR = 0.037	Extinction correction: see
S = 1.42	below	S = 1.42	below
1717 reflections	Atomic scattering factors	1782 reflections	Atomic scattering factors
233 parameters	from International Tables	275 parameters	from International Tables
H atoms: see below	for X-ray Crystallography	H atoms: see below	for X-ray Crystallography
$w = 1/[\sigma^2(F) + 0.0005F^2]$	(1974, Vol. IV)	$w = 1/[\sigma^2(F) + 0.0005F^2]$	(1974, Vol. IV)
$(\Delta/\sigma)_{\rm max} = 0.001$		$(\Delta/\sigma)_{\rm max} = 0.07$	

Table 1. Fractional atomic coordinates and equivalent
isotropic displacement parameters (\mathring{A}^2) for (1)Table 2. Fractional atomic coordinates and equivalent
isotropic displacement parameters (\mathring{A}^2) for (2)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$$

isotropic displacement parameters (Å²) for (2)

$$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}		x	у	Ζ	U_{eq}
O(1)	0.2749 (2)	0.7718(1)	0.6580(1)	0.065 (1)	O(1)	0.8677 (2)	0.3657 (2) 0.0963 (1)	0.058 (1)
C(2)	0.1268 (3)	0.7750 (2)	0.6738 (1)	0.053 (1)	C(2)	0.7449 (3)	0.3219 (2) 0.1479 (2)	0.043(1)
C(3)	0.0552 (3)	0.8695 (2)	0.7082 (2)	0.053 (1)	C(3)	0.6841 (3)	0.3978 (2) 0.2423 (2)	0.038 (1)
N(4)	0.1527 (2)	0.9564 (1)	0.7121 (1)	0.056(1)	N(4)	0.7560 (2)	0.5233 (2) 0.2620(1)	0.042(1)
C(5)	0.2904 (3)	0.9468 (2)	0.6974 (2)	0.053 (1)	C(5)	0.8760 (3)	0.5548 (2) 0.2136 (2)	0.043(1)
C(6)	0.3753 (3)	0.8546 (2)	0.6728 (2)	0.052(1)	C(6)	0.9585 (3)	0.4784 (2) 0.1306 (2)	0.049(1)
O(21)	0.0537 (2)	0.7008(1)	0.6595 (1)	0.073 (1)	O(21)	0.6835 (2)	0.2237 (2	0.1153(1)	0.057(1)
C(31)	-0.0769 (4)	0.8960 (2)	0.6501 (2)	0.080(1)	C(31)	0.5029 (3)	0.4157 (3	0.2143(2)	0.057(1)
O(51)	0.3882 (2)	1.0236 (1)	0.7014(1)	0.072(1)	O(51)	0.9543 (2)	0.6657 (2	0.2324(1)	0.058 (1)
C(52)	0.3225 (4)	1.1205 (2)	0.7179 (3)	0.095(1)	C(52)	0.8979 (5)	0.7454 (3	0.3164(3)	0.075(1)
C(61)	0.4703 (3)	0.8674 (2)	0.5934 (2)	0.063(1)	C(61)	0.9912 (4)	0.5529 (3	0.0283(2)	0.064(1)
C(62)	0.3769 (4)	0.9054 (3)	0.5207 (2)	0.090(1)	C(62)	1.0795 (6)	0.4687 (4	-0.0488(3)	0.109(2)
C(63)	0.5523 (4)	0.7715 (2)	0.5700 (2)	0.079 (1)	C(63)	0.8408 (5)	0 6084 (4	-0.0273(3)	0.091(1)
C(1')	-0.0009(2)	0.8436 (2)	0,7993 (2)	0.050(1)	C(1')	0.7186 (3)	0 3134 (2	0.3472(2)	0.036(1)
C(2')	0.1272 (2)	0.8044 (2)	0.8534 (1)	0.051(1)	C(2')	0.8966 (3)	0.2820 (2	0.3668(2)	0.036(1)
C(3')	0.2288 (3)	0.8669 (2)	0.8942 (2)	0.064(1)	C(3')	0.9524(3)	0.1628 (2	0.3375(2)	0.030(1)
C(4')	0.3475(3)	0.8285 (3)	0.9409(2)	0.082(1)	C(4')	1 1158 (3)	0.1341 (3	0.3400(2)	0.047(1)
C(5')	0.3679 (4)	0.7272(3)	0.9470(2)	0.002(1)	C(5')	1 2231 (3)	0.1341 (3	0.3477(2)	0.059(1)
C(6')	0 2680 (4)	0.6651(2)	0.9082(2)	0.005(1)	C(5')	1.2251 (5)	0.2241 (3	0.3900(2)	0.002(1)
$\mathbf{C}(7')$	0.1488(3)	0.0001(2)	0.9602(2)	0.055(1)	C(0')	1.0082 (3)	0.3423 (3	0.4211(2)	0.030(1)
cu'	-0.0851(3)	0.9309 (2)	0.8020(2) 0.8409(2)	0.061(1)	C(1')	0.6518 (3)	0.3713(2	(2)	0.044(1)
0(2'')	-0.3205(2)	0.9509(2) 0.8584(1)	0.0407(2)	0.001(1)	C(1')	0.0318(3)	0.3701 (2) 0.4484 (2)	0.039(1)
C(2'')	-0.2542(3)	0.0304(1)	0.8340(2)	0.094(1)	O(2')	0.0430 (3)	0.2730(2) 0.5388 (2)	0.039(1)
C(3'')	-0.3369(3)	1.0149(2)	0.8700 (2)	0.009(1)	C(2'')	0.0082(3)	0.1002 (2	0.3231(1)	0.002(1)
0,0)	0.5507 (5)	1.0149 (2)	0.0700 (5)	0.110(2)	C(3')	0.0014(3)	0.3173 (2	0.0483(2)	0.037(1)
Compo					C(4')	0.3163(3)	0.4505 (2	0.0031(2)	0.044(1)
Compo	ouna (2)				C(3')	0.4767 (3)	0.4033 (3) 0.7007(2)	0.055(1)
Crystal	data				C(0')	0.5162 (4)	0.3830 (3	0.8542(2)	0.061(1)
~ ~ ~ .					C(7')	0.0024(4)	0.2745 (3) 0.8413(2)	0.063(1)
$C_{24}H_{27}$	NO ₄	j	Mo $K\alpha$ radiation		C(8)	0.0444 (3)	0.2400 (3) 0.7383 (2)	0.051(1)
$M_{-} = 30$	02.5								
$m_r = J$	95.5		$\lambda = 0.71069 \text{ A}$		C	J (?)			
Monocl	95.5 linic		$\lambda = 0.71069 \text{ A}$	rom 50	Compo	und (3)			
Monocl $P2_1$	linic		A = 0.71069 A Cell parameters f reflections	rom 50	Compo Crystal	und (3) data			
$\frac{m_{F} = 3}{Monocl}$ $\frac{P2_{1}}{a = 8.3}$	63(1)Å	(X = 0.71069 A Cell parameters f reflections $\theta = 10 - 125^{\circ}$	from 50	Compo Crystal	und (3) data NO4		Mo Ko radiation	
$Mr = 3$ Monocl $P2_1$ $a = 8.3$ $b = 10$	63 (1) Å	($\lambda = 0.71069 \text{ A}$ Cell parameters f reflections $\theta = 10-12.5^{\circ}$	from 50	Compose Crystal $C_{19}H_{31}N$	und (3) data NO4		Mo $K\alpha$ radiation	I
Monocl $P2_1$ a = 8.3 b = 10.2	63 (1) Å 453 (1) Å		$\lambda = 0.71069 \text{ A}$ Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$	from 50	Compose Crystal $C_{19}H_{31}N$ $M_r = 33$	und (3) data NO4 37.5		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å	1
Monocl $P2_1$ a = 8.3 b = 10.2 c = 12.2	93.5 linic 63 (1) Å 453 (1) Å 270 (1) Å		A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ T = 293 K	rom 50	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli	und (3) data NO ₄ 37.5 inic		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters	from 55
Monocl $P2_1$ a = 8.3 b = 10. c = 12.2 $\beta = 94.$	93.5 linic 63 (1) Å 453 (1) Å 270 (1) Å .91 (1)°		$\lambda = 0.71069 \text{ A}$ Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ $\Gamma = 293 \text{ K}$ Block	rom 50	Compose Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$	und (3) <i>data</i> NO ₄ 37.5 inic		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections	from 55
Monocl $P2_1$ a = 8.3 b = 10. c = 12.3 $\beta = 94.$ V = 100	93.3 linic 63 (1) Å 453 (1) Å 270 (1) Å 91 (1)° 68.7 (3) Å ³		$\lambda = 0.71069 \text{ A}$ Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$	rom 50	Compose Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71	und (3) data NO4 37.5 inic 12 (1) Å		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$	from 55
Monocl $P2_1$ a = 8.3 b = 10. c = 12. $\beta = 94.$ V = 100 7 - 2	93.3 linic 63 (1) Å 453 (1) Å 270 (1) Å 91 (1)° 68.7 (3) Å ³		$\lambda = 0.71069 \text{ A}$ Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourlass	rom 50 mm	Compose Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8	und (3) data NO4 37.5 inic 12 (1) Å 848 (2) Å		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\omega = 0.07 \text{ mm}^{-1}$	ı from 55
Monocl $P2_1$ a = 8.3 b = 10. c = 12 $\beta = 94.$ V = 100 Z = 2	93.3 linic 63 (1) Å 453 (1) Å 270 (1) Å .91 (1)° 68.7 (3) Å ³		A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless	rom 50 mm	Compose Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8	und (3) data NO4 37.5 inic 12 (1) Å 848 (2) Å		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07$ mm ⁻¹	ı from 55
Monocl $P2_1$ a = 8.3 b = 10. c = 12 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$	93.3 linic 63 (1) Å 453 (1) Å 270 (1) Å 91 (1)° 68.7 (3) Å ³ 223 Mg m ⁻³		$\lambda = 0.71069 \text{ A}$ Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ $T = 293 \text{ K}$ Block $0.9 \times 0.6 \times 0.3$ Colourless	rom 50 mm	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9	und (3) data NO4 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K	from 55
$ \begin{array}{l} M_{F} = 0 \\ Monocl \\ P2_{1} \\ a = 8.3 \\ b = 10. \\ c = 12 \\ \beta = 94. \\ V = 100 \\ Z = 2 \\ D_{x} = 1. \end{array} $	93.3 linic 63 (1) Å 453 (1) Å 270 (1) Å 91 (1)° 68.7 (3) Å ³ 223 Mg m ⁻³		$\lambda = 0.71069 \text{ A}$ Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ $T = 293 \text{ K}$ Block $0.9 \times 0.6 \times 0.3$ Colourless	rom 50 mm	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.3$	und (3) data NO4 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)°		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block	from 55
$ \begin{array}{l} m_{F} = 0 \\ m_{O} = 0 \\ P2_{1} \\ a = 8.3 \\ b = 10, \\ c = 12, \\ \beta = 94, \\ V = 100 \\ Z = 2 \\ D_{x} = 1, \\ Data \ column{2}{c} \end{array} $	93.3 linic 63 (1) Å 453 (1) Å 270 (1) Å 91 (1)° 68.7 (3) Å ³ 223 Mg m ⁻³ ollection		A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless	rom 50 mm	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90$ V = 201	und (3) data NO4 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$	from 55 mm
$ \begin{array}{l} Monocl \\ P2_1 \\ a = 8.3 \\ b = 10. \\ c = 12 \\ \beta = 94. \\ V = 100 \\ Z = 2 \\ D_x = 1. \\ Data \ cc \\ Stoe \ Sin \end{array} $	93.3 linic 63 (1) Å 453 (1) Å 270 (1) Å 91 (1)° 68.7 (3) Å ³ 223 Mg m ⁻³ ollection emens four-circ	cle	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ $T = 293 \text{ K}$ Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$	rom 50 mm	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90$ V = 201 Z = 4	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12.2 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data cc Stoe Significant set of the s	binic 63 (1) Å 453 (1) Å 270 (1) Å $91 (1)^{\circ}$ $68.7 (3) Å^{3}$ $223 Mg m^{-3}$ biliection emens four-circlest	cle /	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ $T = 293 \text{ K}$ Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $R_{mr} = 25^{\circ}$	rom 50 mm	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.1$ V = 201 Z = 4 $D_x = 1$	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mø m ⁻³		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12.3 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data co Stoe Side diffra	binic 63 (1) Å 453 (1) Å 270 (1) Å $.91 (1)^{\circ}$ $68.7 (3) Å^{3}$ $223 Mg m^{-3}$ biliection emens four-circle actometer 205616 fitting (C)	cle /	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ $T = 293 \text{ K}$ Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $h_{max} = 10 \times 3$	rom 50 mm	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.3$ V = 201 Z = 4 $D_x = 1.1$	und (3) data NO4 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12.3 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data co Stoe Sid diffra $\omega/2\theta$ pr	binic 63 (1) Å 453 (1) Å 270 (1) Å $.91 (1)^{\circ}$ $68.7 (3) Å^{3}$ $223 Mg m^{-3}$ biliection emens four-circ actometer rofile fitting (C	cle /	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $a = -10 \rightarrow 3$ k = 0 - 14	rom 50 mm	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.3$ V = 201 Z = 4 $D_x = 1.1$	und (3) data NO4 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12.3 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data cc Stoe Sid diffra $\omega/2\theta$ pr 1981	binic 63 (1) Å 453 (1) Å 270 (1) Å $.91 (1)^{\circ}$ $68.7 (3) Å^{3}$ $223 Mg m^{-3}$ biliection emens four-circ actometer rofile fitting (C.)	cle /	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $a = -10 \rightarrow 3$ $k = 0 \rightarrow 14$	rom 50 mm	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.3$ V = 201 Z = 4 $D_x = 1.1$ Data co	und (3) data NO4 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>llection</i>		Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters : reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12.3 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data cc Stoe Sid diffra $\omega/2\theta$ pr 1981 Absorpt	(1) Å (1) Å (1) Å (1) Å (270 (1) Å (91 (1)° (68.7 (3) Å ³ (223 Mg m ⁻³) (1)(1) ⁶ (2)(2) Å ³ (2)(2) Å ³ (2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(cle // legg, //	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $a = -10 \rightarrow 3$ $k = 0 \rightarrow 14$ $\theta = 0 \rightarrow 18$	rom 50 mm	Compose C_{rystal} $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.3$ V = 201 Z = 4 $D_x = 1.1$ Data coo Stoe Size	und (3) data NO4 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>llection</i> emens four-circ	cle	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters : reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07$ mm ⁻¹ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{int} = 0.021$	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data co Stoe Sid diffra $\omega/2\theta$ pr 1981 Absorpting	linic 63 (1) Å 453 (1) Å 270 (1) Å 270 (1) Å $91 (1)^{\circ}$ $68.7 (3) Å^{3}$ $223 Mg m^{-3}$ <i>ollection</i> emens four-circle cofile fitting (C) tion correction:	cle / (legg, / k	$R_{int} = 0.031$	rom 50 mm	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.7$ V = 201 Z = 4 $D_x = 1$. Data co Stoe Sie diffra	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>llection</i> emens four-cirrectometer	cle	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 25^{\circ}$	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12.2 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data co Stoe Sid diffra $\omega/2\theta$ pr 1981 Absorpt none 1989 m	linic 63 (1) Å 453 (1) Å 270 (1) Å $91 (1)^{\circ}$ $68.7 (3) Å^{3}$ $223 Mg m^{-3}$ <i>ollection</i> emens four-circ actometer rofile fitting (C) tion correction: easured reflect	cle // legg, // ions	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $a = -10 \rightarrow 3$ $k = 0 \rightarrow 14$ $\theta = 0 \rightarrow 18$ θ standard reflect monitored ever	rom 50 mm ions y 100	Compo Crystal C ₁₉ H ₃₁ N $M_r = 33$ Monocli P2 ₁ a = 8.71 b = 12.8 c = 17.9 $\beta = 90$ V = 201 Z = 4 $D_x = 1$ Data co Stoe Sie diffra $\omega/2\theta$ pro	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>llection</i> emens four-cirection ctometer ofile fitting (C	cle legg,	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 25^{\circ}$ $h = -10 \rightarrow 10$	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data cc Stoe Sid diffra $\omega/2\theta$ pr 1981 Absorpt none 1989 m 1900 in	binic 63 (1) Å 453 (1) Å 270 (1) Å $91 (1)^{\circ}$ $68.7 (3) Å^{3}$ $223 Mg m^{-3}$ bilication emens four-circle actometer rofile fitting (C) tion correction: measured reflect dependent reflect	cle / legg, / ions ections	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $a = -10 \rightarrow 3$ $k = 0 \rightarrow 14$ B standard reflect monitored ever reflections	rom 50 mm ions y 100	Compo Crystal C ₁₉ H ₃₁ N $M_r = 33$ Monocli P2 ₁ a = 8.71 b = 12.8 c = 17.5 $\beta = 90.1$ V = 201 Z = 4 $D_x = 1$. Data co Stoe Sie diffra $\omega/2\theta$ pro-	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ illection emens four-cirric ctometer ofile fitting (C	cle legg,	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{int} = 0.021$ $\theta_{max} = 25^{\circ}$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12.2 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data cc Stoe Sid diffra $\omega/2\theta$ pr 1981 Absorpt none 1989 m 1900 in 1782 of	binic 63 (1) Å 453 (1) Å 270 (1) Å $91 (1)^{\circ}$ $68.7 (3) Å^{3}$ $223 Mg m^{-3}$ bilication emens four-circle actometer rofile fitting (C.) tion correction: beasured reflect dependent reflection beasured reflection	cle // legg, // cless, //	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $a = -10 \rightarrow 3$ $k = 0 \rightarrow 14$ $b = 0 \rightarrow 18$ B standard reflect monitored ever reflections intensity decay	ions y 100	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.3$ V = 2011 Z = 4 $D_x = 1.1$ Data co Stoe Sie diffra $\omega/2\theta$ pro- 19811	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>illection</i> emens four-circ ctometer ofile fitting (C)	cle legg,	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{int} = 0.021$ $\theta_{max} = 25^{\circ}$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ L = 0.21	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12.2 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data cc Stoe Sid diffra $\omega/2\theta$ pr 1981 Absorpt none 1989 m 1900 in 1782 ob F = 2	binic 63 (1) Å 453 (1) Å 270 (1) Å .91 (1)° 68.7 (3) Å ³ 223 Mg m ⁻³ bilection emens four-circle actometer rofile fitting (C) tion correction: tion correction: biserved reflection $3\pi(E)$	cle // legg, // cless, // cless, // cless	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $a = -10 \rightarrow 3$ $k = 0 \rightarrow 14$ B standard reflect monitored ever reflections intensity decay	rom 50 mm ions y 100 : negligible	Compo Crystal C ₁₉ H ₃₁ N $M_r = 33$ Monocli P2 ₁ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.3$ V = 201 Z = 4 $D_x = 1.1$ Data co Stoe Sie diffra $\omega/2\theta$ pro- 1981) Absorpt	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>llection</i> emens four-circ ctometer ofile fitting (C) ion correction	cle legg,	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{int} = 0.021$ $\theta_{max} = 25^{\circ}$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = 0 \rightarrow 21$	from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data co Stoe Sid diffra $\omega/2\theta$ pr 1981 Absorpt none 1989 m 1900 in 1782 of [F >	space (1) Å (1) Å (1) Å (1) Å (1)° (1)° (1)° (2)3 Mg m ⁻³ (2)3 Mg m ⁻³	cle // legg, // cless, //	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $h = -10 \rightarrow 3$ $k = 0 \rightarrow 14$ B standard reflect monitored ever reflections intensity decay	rom 50 mm y 100 : negligible	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.3$ V = 201 Z = 4 $D_x = 1.1$ Data co Stoe Sie diffra $\omega/2\theta$ pro- 1981) Absorpt none	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>llection</i> emens four-cira ctometer ofile fitting (C) ion correction	cle legg,	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters : reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{int} = 0.021$ $\theta_{max} = 25^{\circ}$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = 0 \rightarrow 21$ 3 standard reflec	n from 55 mm
Monocl $P2_1$ a = 8.3 b = 10. c = 12 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data co Stoe Sid diffra $\omega/2\theta$ pr 1981 Absorpt none 1989 m 1900 in 1782 ot [F > Pachericanov (F = 1)]	linic 63 (1) Å 453 (1) Å 270 (1) Å 91 (1)° 68.7 (3) Å ³ 223 Mg m ⁻³ 223 Mg m ⁻³ 223 Mg m ⁻³ content of the second	cle // legg, // clions ections ons	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $a = -10 \rightarrow 3$ $k = 0 \rightarrow 14$ B standard reflect monitored ever reflections intensity decay	rom 50 mm y 100 : negligible	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.1$ V = 201 Z = 4 $D_x = 1.1$ Data co Stoe Sie diffra $\omega/2\theta$ pro- 1981) Absorpt none	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>llection</i> emens four-ciractometer ofile fitting (C) ion correction easured reflect	cle legg, : ions	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{int} = 0.021$ $\theta_{max} = 25^{\circ}$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = 0 \rightarrow 21$ 3 standard reflect monitored eve	from 55 mm tions ry 100
Monocl $P2_1$ a = 8.3 b = 10. c = 12 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data cc Stoe Sin diffra $\omega/2\theta$ pr 1981 Absorpt none 1989 m 1900 in 1782 of [F > Refinem	binic 63 (1) Å 453 (1) Å 270 (1) Å 91 (1)° 68.7 (3) Å ³ 223 Mg m ⁻³ 223 Mg m ⁻³ 223 Mg m ⁻³ bilection emens four-circ actometer rofile fitting (C) tion correction: tion correction: becaused reflect dependent reflect $3\sigma(F)$] tion	cle / legg, / ions ections ons	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $a = -10 \rightarrow 3$ $k = 0 \rightarrow 14$ B standard reflect monitored ever reflections intensity decay	rom 50 mm ions y 100 : negligible	Compo Crystal $C_{19}H_{31}N$ $M_r = 33$ Monocli $P2_1$ a = 8.71 b = 12.8 c = 17.5 $\beta = 90.1$ V = 201 Z = 4 $D_x = 1.$ Data co Stoe Sie diffra $\omega/2\theta$ pro- 1981) Absorpt none 7957 ma 3713 ind	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>illection</i> emens four-cirrection emens four-cirrection cometer ofile fitting (C) ion correction easured reflect dependent reflect	cle legg, : ions ections	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{int} = 0.021$ $\theta_{max} = 25^{\circ}$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = 0 \rightarrow 21$ 3 standard reflect monitored ever reflections	from 55 mm tions ry 100
Monocl $P2_1$ a = 8.3 b = 10. c = 12.2 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data cc Stoe Sid diffra $\omega/2\theta$ pr 1981 Absorpt none 1989 m 1900 in 1782 of [F > Refinem Refinem	binic 63 (1) Å 453 (1) Å 270 (1) Å 91 (1)° 68.7 (3) Å ³ 223 Mg m ⁻³ 223 Mg m ⁻³ collection emens four-circ actometer rofile fitting (C) tion correction: tion correction: beasured reflectide dependent reflectide asymptotic actometer (C) tion correction: tion	cle // legg, // cless, //	A = 0.71069 A Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $u = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $u = -10 \rightarrow 3$ $k = 0 \rightarrow 14$ B standard reflect monitored ever reflections intensity decay	ions y 100 : negligible	Compo Crystal C ₁₉ H ₃₁ N $M_r = 33$ Monocli P2 ₁ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.3$ V = 2011 Z = 4 $D_x = 1.7$ Data co Stoe Sie diffra $\omega/2\theta$ pro- 1981) Absorpt none 7957 mc 3713 ind 3225 ob	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>illection</i> emens four-cirrection emens four-cirrection ion correction easured reflection easured reflection	cle legg, : ions ections ons	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 25^{\circ}$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = 0 \rightarrow 21$ 3 standard reflect monitored ever reflections intensity decay	from 55 mm tions ry 100
Monocl $P2_1$ a = 8.3 b = 10. c = 12.2 $\beta = 94.$ V = 100 Z = 2 $D_x = 1.$ Data cc Stoe Sid diffra $\omega/2\theta$ pr 1981 Absorpt none 1989 m 1900 in 1782 ob [$F > Refinem$ Refinem	binic 63 (1) Å 453 (1) Å 270 (1) Å 91 (1)° 68.7 (3) Å ³ 223 Mg m ⁻³ bilection emens four-circle actometer rofile fitting (C) tion correction: tion correction: tion correction: bilection tion correction: $3\sigma(F)$] ment ment on F 134	cle // legg, // cless, // cless, // cless	$\Delta = 0.71069 \text{ A}$ Cell parameters f reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Block $0.9 \times 0.6 \times 0.3$ Colourless $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $a = -10 \rightarrow 3$ $c = 0 \rightarrow 14$ $B = 0 \rightarrow 18$ B standard reflect monitored ever reflections intensity decay $\Delta \rho_{max} = 0.13 \text{ e} A$	from 50 mm ions y 100 : negligible $\lambda_{\lambda=3}^{-3}$	Compo Crystal C ₁₉ H ₃₁ N $M_r = 33$ Monocli P2 ₁ a = 8.71 b = 12.8 c = 17.9 $\beta = 90.2$ V = 201 Z = 4 $D_x = 1.1$ Data co Stoe Sie diffra $\omega/2\theta$ pro- 1981) Absorpt none 7957 mo 3713 ind 3225 ob E = 2	und (3) data NO ₄ 37.5 inic 12 (1) Å 848 (2) Å 971 (2) Å 39 (1)° 11.5 (5) Å ³ 114 Mg m ⁻³ <i>llection</i> emens four-cire ctometer ofile fitting (C) ion correction easured reflecti dependent reflecti $2\pi(E)$	cle legg, : ions ections ons	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Block $0.8 \times 0.7 \times 0.5$ Colourless $R_{int} = 0.021$ $\theta_{max} = 25^{\circ}$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = 0 \rightarrow 21$ 3 standard reflect monitored every reflections intensity decay	from 55 mm tions ry 100 y: negligible

Refinement		Orthorhombic	Cell parameters from 40
Refinement on F R = 0.051 wR = 0.053 S = 1.402 3225 reflections 463 parameters H atoms: see below $w = 1/[\sigma^2(F) + 0.0008F^2]$	$(\Delta/\sigma)_{max} = 0.08$ $\Delta\rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)	$P2_{1}2_{1}2_{1}$ a = 8.228 (1) Å b = 15.310 (2) Å c = 17.027 (1) Å $V = 2144.9 (7) \text{ Å}^{3}$ Z = 4 $D_{x} = 1.184 \text{ Mg m}^{-3}$	reflections $\theta = 10-12.5^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 293 K Block $0.5 \times 0.5 \times 0.4 \text{ mm}$ Colourless

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (3)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	v	Z	U_{eq}
O(1)	0.3010 (3)	0.3525 (2)	0.4171(1)	0.076(1)
C(2)	0.1577 (4)	0.3417 (2)	0.4422(1)	0.065 (1)
C(3)	0.0827 (3)	0.4287 (2)	0.4867 (2)	0.065 (1)
N(4)	0.1805 (3)	0.5179 (2)	0.5037(1)	0.065(1)
C(5)	0.3132 (3)	0.5209 (2)	0.4780(2)	0.059(1)
C(6)	0.3948 (3)	0.4428 (2)	0.4309 (2)	0.064 (1)
O(21)	0.0912 (3)	0.2626 (2)	0.4270(1)	0.090(1)
C(31)	-0.0512(4)	0.4682 (3)	0.4387 (2)	0.088 (1)
O(51)	0.4094 (2)	0.6015 (2)	0.4920(1)	0.077 (1)
C(52)	0.3504 (5)	0.6833 (3)	0.5381 (3)	0.098 (1)
C(61)	0.4503 (4)	0.4863 (3)	0.3575 (2)	0.084 (1)
C(62)	0.3206 (5)	0.5349 (4)	0.3122 (2)	0.114 (2)
C(63)	0.5397 (5)	0.4053 (4)	0.3153 (2)	0.119 (2)
C(1')	0.0222 (3)	0.3811 (2)	0.5604 (2)	0.059 (1)
C(2')	0.1438 (3)	0.3202 (3)	0.6053(1)	0.063 (1)
C(3')	0.2562 (4)	0.3826 (3)	0.6524 (2)	0.100(1)
C(4')	0.3718 (4)	0.3134 (4)	0.6915 (2)	0.114 (2)
C(5')	0.2943 (5)	0.2329 (3)	0.7389 (2)	0.096 (1)
C(6')	0.1809 (4)	0.1689 (3)	0.6934 (2)	0.090 (1)
C(7')	0.0684 (4)	0.2366 (3)	0.6528 (2)	0.071 (1)
C(1'')	-0.0629 (3)	0.4637 (3)	0.6074 (2)	0.071 (1)
C(2'')	-0.2341 (3)	0.4648 (3)	0.6020 (2)	0.077 (1)
O(2'')	-0.3072 (3)	0.4014 (3)	0.5675 (2)	0.116(1)
C(3'')	-0.3115 (4)	0.5504 (4)	0.6425 (3)	0.105 (2)
O(1a)	0.7768 (2)	0.3230 (2)	0.1315 (1)	0.075 (1)
C(2a)	0.6299 (3)	0.3218 (2)	0.1096(1)	0.064 (1)
C(3a)	0.5593(3)	0.2204 (2)	0.0807(2)	0.066(1)
$\Gamma(4a)$	0.0010(3)	0.1300(2)	0.0806(2)	0.072 (1)
C(5a)	0.7793 (4)	0.1409(2) 0.2360(2)	0.0990(2) 0.1245(2)	0.005(1)
O(21a)	0.5587 (3)	0.2509(2) 0.4001(2)	0.1245(2)	0.007(1)
C(31a)	0.3367(3) 0.4252(4)	0.1956 (3)	0.1329(2)	0.094 (1)
O(51a)	0.1292(4)	0.0607(2)	0.0979(2)	0.094(1)
C(52a)	0.8375(5)	-0.0382(3)	0.0731(3)	0.000(1)
C(61a)	0.9642 (4)	0.2242(4)	0.1997(2)	0.096 (1)
C(62a)	0.8584 (6)	0.1883 (4)	0.2600 (2)	0.126 (2)
C(63a)	1.0475 (5)	0.3241 (4)	0.2203 (3)	0.131 (2)
C(1'a)	0.5005 (3)	0.2429 (2)	0.0004 (2)	0.063 (1)
C(2'a)	0.6311 (3)	0.2789 (2)	-0.0516 (2)	0.061 (1)
C(3'a)	0.7127 (4)	0.1946 (3)	-0.0975 (2)	0.077 (1)
C(4'a)	0.8423 (4)	0.2389 (3)	-0.1433 (2)	0.087(1)
C(5'a)	0.7895 (5)	0.3257 (4)	-0.1932 (2)	0.102 (2)
C(6'a)	0.7056 (4)	0.4085 (3)	-0.1514 (2)	0.094 (1)
C(7'a)	0.5769 (4)	0.3639 (3)	-0.1040 (2)	0.076 (1)
C(1''a)	0.4063 (3)	0.1526 (3)	-0.0326 (2)	0.082 (1)
C(2''a)	0.2364 (3)	0.1601 (2)	-0.0269 (2)	0.067 (1)
O(2''a)	0.1716 (2)	0.2372 (2)	-0.0048 (2)	0.091 (1)
C(3''a)	0.1498 (4)	0.0676 (3)	-0.0537 (3)	0.102 (2)
Compo	und (4)			
Compo				
<i>crystal</i>	aata			

Mo $K\alpha$ radiation

 $\lambda = 0.71069 \text{ Å}$

 $C_{20}H_{31}N_2O_3^+.Cl^-$

 $M_r = 382.9$

Data collection

 $R_{int} = 0.024$ $\theta_{max} = 25^{\circ}$ $h = -9 \rightarrow 3$ $k = 0 \rightarrow 18$ Stoe Siemens four-circle diffractometer $\omega/2\theta$ profile fitting (Clegg, 1981) Absorption correction: $l=0 \rightarrow 20$ none 3 standard reflections 3475 measured reflections monitored every 100 2182 independent reflections reflections 2176 observed reflections intensity decay: negligible $[F > 3\sigma(F)]$

Refinement

$(\Delta/\sigma)_{\rm max} = 0.008$
$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta ho_{ m min}$ = -0.29 e Å $^{-3}$
Extinction correction: none
Atomic scattering factors
from International Tables
for X-ray Crystallography
(1974, Vol. IV)

Table 4. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (4)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$$

	x	у	Z	U_{eq}
O(1)	0.9256 (3)	0.1499(1)	0.6143 (1)	0.048 (1)
C(2)	0.8720 (5)	0.0900 (2)	0.5636 (2)	0.043 (1)
C(3)	0.7884 (5)	0.0091 (2)	0.5965 (2)	0.038 (1)
N(4)	0.7249 (4)	0.0169 (2)	0.6760(1)	0.040 (1)
C(5)	0.7891 (5)	0.0737 (2)	0.7199 (2)	0.041 (1)
C(6)	0.9184 (5)	0.1377 (2)	0.6992 (2)	0.048 (1)
O(21)	0.8943 (4)	0.1017 (2)	0.4948 (1)	0.065 (1)
C(31)	0.9238 (5)	-0.0588 (2)	0.5956 (2)	0.051 (1)
O(51)	0.7477 (3)	0.0787 (2)	0.7965(1)	0.054 (1)
C(52)	0.6404 (6)	0.0111 (3)	0.8243 (2)	0.066 (2)
C(61)	0.8983 (7)	0.2295 (2)	0.7338 (2)	0.073 (2)
C(62)	0.7405 (7)	0.2727 (3)	0.7044 (3)	0.094 (2)
C(63)	1.0452 (8)	0.2847 (3)	0.7170(3)	0.106 (2)
C(1')	0.6463 (5)	-0.0210 (2)	0.5415 (2)	0.041 (1)
C(2')	0.6170 (5)	-0.1188 (2)	0.5495 (2)	0.042 (1)
C(3')	0.6612 (5)	-0.1726 (2)	0.4869 (2)	0.052 (1)
C(4′)	0.6541 (6)	-0.2619 (2)	0.4943 (2)	0.060 (2)
C(5')	0.6037 (6)	-0.2986 (2)	0.5629 (2)	0.061 (1)
C(6')	0.5551 (5)	-0.2463 (2)	0.6245 (2)	0.059 (1)
C(7')	0.5607 (5)	-0.1565 (2)	0.6178 (2)	0.051 (1)
N(1'')	0.4911 (4)	0.0302 (2)	0.5542 (2)	0.044 (1)
C(1'')	0.5162 (6)	0.1278 (2)	0.5460 (2)	0.060 (2)
C(2'')	0.3603 (6)	0.1799 (3)	0.5552 (3)	0.086 (2)
C(3'')	0.3564 (5)	-0.0022 (2)	0.5020(2)	0.060(1)
C(4'')	0.3871 (7)	0.0081 (3)	0.4153 (2)	0.084 (2)
Cl	0.2852(1)	0.0144 (1)	0.7036(1)	0.071 (1)

2592

SIX DIHYDROOXAZINONES

Compound (5)

Crystal data

C₁₆H₂₁NO₄ $M_r = 291.3$ Monoclinic $P2_1$ a = 8.039 (1) Å b = 11.097 (1) Å c = 8.498 (1) Å $\beta = 98.92 (1)^{\circ}$ V = 748.9 (4) Å³ Z = 2 $D_r = 1.292 \text{ Mg m}^{-3}$

Data collection

Stoe Siemens four-circle
diffractometer
$\omega/2\theta$ profile fitting (Clegg,
1981)
Absorption correction:
none
1428 measured reflections
1252 independent reflections
1170 observed reflections
$[F > 3\sigma(F)]$

Refine

205 parameters

H atoms: see below

 $(\Delta/\sigma)_{\rm max} = 0.002$

 $w = 1/[\sigma^2(F) + 0.003F^2]$

1252 independent reflections 1170 observed reflections $[F > 3\sigma(F)]$	reflections intensity decay: negligible
Refinement	
Refinement on F	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.027	$\Delta \rho_{\rm min} = -0.13 \ \rm e \ \rm \AA^{-3}$
wR = 0.033	Extinction correction: see
S = 1.37	below
1170 reflections	Atomic scattering factors

C₁₆H₂₁N $M_r = 29$ Cell parameters from 45 Monocli $P2_1$ a = 8.51b = 9.37c = 10.6 $\beta = 105$ $0.6 \times 0.4 \times 0.4$ mm V = 815Z = 2

 $D_{\rm r} = 1.$

Mo $K\alpha$ radiation

 $\lambda = 0.71069 \text{ Å}$

reflections

 $\mu = 0.06 \text{ mm}^{-1}$

 $\theta = 10 - 12.5^{\circ}$

T = 293 K

Colourless

 $R_{\rm int} = 0.014$

 $\theta_{\max} = 25^{\circ}$ $h = -9 \rightarrow 9$

 $k = -3 \rightarrow 5$

 $l = 0 \rightarrow 10$

3 standard reflections

monitored every 100

Block

Data collection Stoe Siemens four-circle diffractometer $\omega/2\theta$ profile-fitted (Clegg, 1981) Absorption correction: none 1917 measured reflections 1821 independent reflections 1441 observed reflections

 $[F > 3\sigma(F)]$

Refinement

Refinement on F $\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$ R = 0.046wR = 0.042Extinction correction: see see S = 1.37below Atomic scattering factors 1441 reflections Atomic scattering factors from International Tables 205 parameters from International Tables for X-ray Crystallography H atoms: see below for X-ray Crystallography (1974, Vol. IV) $w = 1/[\sigma^2(F) + 0.0003F^2]$ (1974, Vol. IV) $(\Delta/\sigma)_{\rm max} = 0.003$

Table 5. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (5)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

Table 6. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (6)

 $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Z	U_{eq}		x	v	z	U_{eq}
O(1)	0.6616(1)	0.4688	0.5809(1)	0.046 (1)	O(1)	0.6908 (2)	0.3379	0.4698 (2)	0.063(1)
C(2)	0.7593 (2)	0.5078 (3)	0.4769 (2)	0.044 (1)	C(2)	0.5808 (3)	0.2757 (3)	0.3722 (3)	0.044(1)
C(3)	0.7269 (2)	0.4618 (3)	0.3054 (2)	0.040(1)	C(3)	0.4603 (3)	0.3661 (3)	0.2746 (3)	0.043 (1)
N(4)	0.5768 (2)	0.3872(3)	0.2632 (2)	0.038 (1)	N(4)	0.4959 (3)	0.5180(3)	0.2750 (2)	0.048 (1)
C(5)	0.5039 (2)	0.3472 (3)	0.3723 (2)	0.037(1)	C(5)	0.6015 (3)	0.5677 (3)	0.3712 (3)	0.051(1)
C(6)	0.5448 (2)	0.3713 (4)	0.5482 (2)	0.039(1)	C(6)	0.7012 (3)	0.4912 (4)	0.4882 (3)	0.052 (1)
O(21)	0.8668 (2)	0.5804 (3)	0.5214 (2)	0.059(1)	O(21)	0.5789 (3)	0.1481 (3)	0.3684 (2)	0.064 (1)
C(31)	0.7103 (3)	0.5693 (4)	0.1949 (3)	0.054 (2)	C(31)	0.2949 (3)	0.3502 (5)	0.3054 (3)	0.065 (1)
O(51)	0.3724 (2)	0.2712 (3)	0.3429 (2)	0.047(1)	O(51)	0.6351 (3)	0.7082 (3)	0.3808 (2)	0.068(1)
C(52)	0.3241 (3)	0.2336 (4)	0.1800(2)	0.055 (2)	C(52)	0.5449 (6)	0.7974 (4)	0.2759 (4)	0.098 (2)
C(61)	0.3896 (2)	0.4009 (4)	0.6232 (2)	0.044 (1)	C(61)	0.8819 (4)	0.5273 (5)	0.5258 (4)	0.078(1)
C(62)	0.3005 (3)	0.5114 (4)	0.5473(3)	0.062 (2)	C(62)	0.9717(6)	0.4485 (6)	0.6504 (4)	0.122 (2)
C(63)	0.4353 (3)	0.4161 (5)	0.8042 (3)	0.065 (2)	C(63)	0.9577 (6)	0.5039 (7)	0.4133 (5)	0.114 (2)
C(1')	0.8833 (2)	0.3843 (4)	0.2854 (2)	0.040(1)	C(1')	0.4493 (3)	0.3131 (4)	0.1355 (3)	0.046(1)
O(1')	0.8967 (2)	0.2976 (3)	0.4098 (2)	0.052(1)	O(1')	0.3226 (2)	0.3861 (3)	0.0439 (2)	0.059(1)
C(2')	0.8749 (2)	0.3291 (4)	0.1221 (2)	0.037 (2)	C(2')	0.6087 (3)	0.3235 (4)	0.0978 (3)	0.042(1)
C(3')	0.9402 (3)	0.3884 (5)	0.0019 (3)	0.045 (2)	C(3')	0.6550 (4)	0.4485 (4)	0.0503 (3)	0.057(1)
C(4')	0.9352 (3)	0.3379 (5)	-0.1475 (3)	0.058 (2)	C(4')	0.7999 (4)	0.4577 (5)	0.0153 (3)	0.072 (2)
C(5')	0.8642 (3)	0.2271 (5)	-0.1795(3)	0.059 (2)	C(5')	0.8990 (4)	0.3416(7)	0.0268 (3)	0.081(2)
C(6')	0.7947 (3)	0.1666 (5)	-0.0631(3)	0.053 (2)	C(6')	0.8550 (4)	0.2158 (6)	0.0748 (3)	0.076(2)
C(7')	0.8021 (3)	0.2184 (5)	0.0873 (3)	0.045 (2)	C(7')	0.7112 (4)	0.2074 (6)	0.1106 (3)	0.059(1)

Compound (6) Crystal data

NO ₄ 11.3 inic	N 2 0
12 (1) Å 75 (1) Å 607 (1) Å 149 (1)° .7 (5) Å ³	6 7 1 1 0 0
186 Mg m^{-3}	, c

Mo $K\alpha$ radiation $\lambda = 0.71069 \text{ Å}$ Cell parameters from 40 reflections $\theta = 10 - 12.5^{\circ}$ $\mu = 0.05 \text{ mm}^{-1}$ = 293 KBlock $0.5 \times 0.4 \times 0.2$ mm Colourless

$R_{\rm int} = 0.023$
$\theta_{\rm max} = 25^{\circ}$
$h = -10 \rightarrow 9$
$k = -11 \rightarrow 2$
$l = 0 \rightarrow 12$
3 standard reflections
monitored every 100
reflections
intensity decay: negligible

Table 7. Selected bond lengths (Å), bond angles (°) and torsion angles (°)

	(1)	(2)	(3) Molecule A	(3) Molecule <i>B</i>	(4)	(5)	(6)	Mean
O(1)—C(2)	1.336 (3)	1.332 (3)	1.337 (4)	1.337 (4)	1.334 (4)	1.342 (3)	1.331 (3)	1.336 [4]
C(2)—C(3)	1.520 (3)	1.527 (3)	1.524 (4)	1.530 (4)	1.524 (5)	1.528 (3)	1.509 (4)	1.523 [7]
C(3)N(4)	1.453 (3)	1.454 (3)	1.459 (4)	1.463 (4)	1.454 (4)	1.461 (3)	1.456 (4)	1.457 [4]
N(4)—C(5)	1.249 (3)	1.253 (3)	1.248 (4)	1.251 (4)	1.263 (4)	1.253 (3)	1.256 (4)	1.253 [5]
C(5)—C(6)	1.500 (3)	1.507 (3)	1.495 (4)	1.484 (4)	1.488 (5)	1.503 (3)	1.487 (4)	1.495 [9]
C(6)—O(1)	1.443 (3)	1.444 (3)	1.440 (4)	1.428 (4)	1.459 (4)	1.432 (3)	1.450 (3)	1.44 [1]
O(21)—C(2)	1.209 (3)	1.201 (3)	1.201 (4)	1.184 (4)	1.200 (4)	1.199 (4)	1.197 (4)	1.199 [7]
O(51)—C(5)	1.349 (3)	1.343 (3)	1.354 (3)	1.352 (4)	1.350 (4)	1.346 (3)	1.346 (4)	1.349 [4]
O(51)—C(52)	1.449 (3)	1.436 (4)	1.436 (5)	1.450 (4)	1.441 (5)	1.440 (3)	1.439 (5)	1.442 [6]
O(1)—C(2)—C(3)	120.2 (2)	120.1 (2)	120.4 (3)	119.5 (3)	118.0 (3)	119.3 (2)	119.8 (2)	119.6 [8]
O(1)—C(2)—C(3)	116.0 (2)	115.8 (2)	115.7 (2)	115.6 (2)	116.0 (3)	115.8 (2)	116.4 (2)	115.9 [3]
O(1)-C(2)-C(3)	119.3 (2)	119.7 (2)	119.2 (2)	119.5 (3)	117.1 (3)	118.8 (2)	118.0 (2)	118.8 [9]
O(1)-C(2)-C(3)	128.6 (2)	127.8 (2)	129.3 (3)	128.5 (3)	127.8 (3)	128.2 (2)	128.6 (3)	128.4 [5]
O(1)-C(2)-C(3)	111.6 (2)	111.7 (2)	111.5 (2)	112.2 (2)	110.3 (3)	111.3 (2)	111.4 (2)	111.4 [6]
O(1)-C(2)-C(3)	123.5 (2)	123.3 (2)	123.7 (2)	124.2 (2)	122.7 (3)	123.3 (2)	122.9 (2)	123.4 [5]
O(1)—C(2)—C(3)	117.7 (2)	117.4 (2)	117.4 (3)	118.2 (3)	118.6 (3)	118.4 (2)	117.7 (2)	117.9 [5]
O(1)—C(2)—C(3)	122.1 (2)	122.4 (2)	122.2 (3)	122.4 (3)	123.4 (3)	122.3 (2)	122.5 (2)	122.5 [4]
O(1)-C(2)-C(3)	122.7 (2)	123.0 (2)	121.9 (3)	121.8 (3)	120.4 (3)	121.9 (2)	121.1 (3)	121.8 [9]
O(1)C(2)C(3)	108.7 (2)	109.2 (2)	108.8 (2)	109.6 (2)	111.8 (3)	109.9 (2)	110.3 (2)	110 [1]
O(1) - C(2) - C(3)	115.9 (2)	116.0 (2)	116.3 (2)	115.7 (2)	115.6 (2)	116.6 (2)	116.9 (2)	116.1 [5]
O(1)—C(2)—C(3)—N(4)	7.3 (3)	6.5 (3)	-4.3 (4)	0.8 (4)	20.3 (5)	6.5 (3)	14.1 (4)	
O(1) - C(2) - C(3) - N(4)	-8.4 (3)	- 10.1 (3)	4.1 (4)	-3.7 (4)	-24.0 (4)	-13.2 (3)	-14.5 (3)	
O(1) - C(2) - C(3) - N(4)	1.9 (4)	2.0 (3)	-1.3 (4)	0.7 (5)	3.2 (5)	3.7 (3)	1.1 (3)	
O(1)C(2)C(3)N(4)	6.1 (4)	9.4 (3)	-1.6 (4)	4.9 (5)	20.5 (5)	12.1 (3)	12.6 (4)	
O(1) - C(2) - C(3) - N(4)	-7.0 (3)	-12.8 (3)	1.3 (3)	-7.9 (4)	-23.6 (4)	18.9 (3)	-12.5 (3)	
O(1)-C(2)-C(3)-N(4)	0.8 (3)	5.5 (3)	1.5 (4)	5.4 (4)	4.8 (5)	10.5 (3)	0.2 (4)	
O(1)—C(2)—C(3)—N(4)	-4.3 (3)	3.1 (3)	0.1 (4)	-0.3 (5)	5.6 (5)	2.7 (3)	-0.1 (3)	

The data were corrected for Lorentz and polarization effects. An extinction correction was made for compounds (1), (2), (5) and (6) $[F^* = F(1 + 0.002\chi F^2/\sin 2\theta)^{-1/4}]$, where $\chi = 0.011$ (1), 0.009 (1), 0.009 (1) and 0.014 (1), respectively]. The structures were solved by direct methods using SHELXS86 (Sheldrick, 1985) and refined with a modified version of SHELX76 (Sheldrick, 1976). All H atoms were located by difference synthesis and refined with fixed individual displacement parameters using a riding model [with the exceptions that the hydroxy H atoms in (5) and in (6) were refined isotropically with the O-H distance restrained to 0.85 Å, and H(N) in (4) was refined isotropically without any constraints or restraints] or refining methyl groups as rigid groups; non-H atoms were refined anisotropically by blocked-cascade least-squares methods. Molecular graphics were prepared using SHELXTL (Sheldrick, 1983).

I thank Professor Schöllkopf (University of Göttingen) for providing the samples, Professor Egert (University of Frankfurt) for many helpful discussions and the Fonds der Chemischen Industrie for financial support.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Autom. News, 8, 31-37.
- Bolte, M., Beck, H., Nieger, M. & Egert, E. (1994). Acta Cryst. C50, 1717–1721.
- Clegg, W. (1981). Acta Cryst. A37, 22-28.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Fujiwara, H., Bose, A. K., Manhas, M. S. & van der Veen, J. M.
- (1979). J. Chem. Soc. Perkin Trans. 2, pp. 653–658.
 Iwasaki, F., Watanabe, T. & Maeda, K. (1987). Bull. Chem. Soc. Jpn, 60, 1255–1259.
- Kopple, K. D. & Marr, D. H. (1967). J. Am. Chem. Soc. 89, 6193-6200.
- Kopple, K. D. & Onishi, M. (1969). J. Am. Chem. Soc. 91, 962-970.
- Lin, C. -F. & Webb, L. E. (1973). J. Am. Chem. Soc. 95, 6803-6811.
- Mathieson, A. M. & Taylor, J. C. (1963). Acta Cryst. 16, 524-530.
- Maywald, V. (1987). PhD thesis, Univ. of Göttingen, Germany.
- Schöllkopf, U. (1983). Top. Curr. Chem. A109, 65-83.
- Schöllkopf, U., Grüttner, S., Anderskewitz, R., Egert, E. & Dyrbusch, M. (1987). Angew. Chem. Int. Ed. Engl. 26, 683-684.
- Schöllkopf, U., Hupfeld, B., Küper, S., Egert, E. & Dyrbusch, M. (1988). Angew. Chem. Int. Ed. Engl. 27, 433–434.
- Schöllkopf, U., Kühnle, W., Egert, E. & Dyrbusch, M. (1987). Angew. Chem. Int. Ed. Eng. 26, 480-482.
- Schöllkopf, U., Pettig, D., Busse, U., Egert, E. & Dyrbusch, M. (1986). Synthesis, pp. 737-740.
- Schöllkopf, U., Pettig, D., Schulze, E., Klinge, M., Egert, E., Benecke, B. & Noltemeyer, M. (1988). Angew. Chem. 100, 1238–1239.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1983). SHELXTL Users Manual. Revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1140). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.